

WW3 VLAB - GIT/GERRIT

February 2018
Information in this document (including updates) can be found on

https://vlab.ncep.noaa.gov/redmine/projects/emc-ww3/wiki

Terms to know:
VLab:​ NOAA Virtual Lab - provides an environment for collaboration
Git:​ Distributed version control system
Gerrit:​ Provides code review with a user interface (Gerrit project==git repository)
Redmine:​ More/less equivalent to Trac

Redmine and Code Review Pages for WW3:
● Redmine: ​https://vlab.ncep.noaa.gov/redmine/projects/emc-ww3

○ Similar to the trac page
○ Has code viewer, tickets, milestones, documents page and a wiki.
○ Use your VLDS VLab account password

● Code review page: ​https://vlab.ncep.noaa.gov/code-review/#/admin/projects/EMC_ww3
○ Go here to see code you have submitted for review
○ See code to review others have submitted
○ Use your VLCS VLab account password

Notes about EMC_ww3 GIT repo:

1. The GIT repo was created with the svn trunk r98082
2. Binary and large files were not migrated to GIT.
3. The cases and smc_docs folder were removed. The smc_docs folder as a whole will come

back when the smc documentation is in latex format. For now both cases and the smc_docs
folder are stored on the ftp site along with files for regtests that are binary. The ftp site:
ftp://polar.ncep.noaa.gov/tempor/ww3ftp/ww3_from_ftp.tar.gz

4. To automatically download the data from the ftp site:
>> sh model/bin/ww3_from_ftp.sh

5. To keep from adding unintentional files to the GIT repo (and therefore keep binary files out…)
I have added a .gitignore file

6. The following files were accidentally removed (mistaken for binary) were re-added to the GIT
repo without their history (Note, these files had not changed in the past 4 years):
-manual/run/core.tex -regtest/mww3_test_{04/05}/input/{curr/depth/mask/wind}.data

7. If you need to add a binary file for a regtest, this will need to be added to the ftp site. Contact
the code manager: ​jessica.meixner@noaa.gov

8. PLEASE DO NOT ADD LARGE OR BINARY FILES TO THE GIT REPO!!!!!!!!!

https://vlab.ncep.noaa.gov/redmine/projects/emc-ww3
https://vlab.ncep.noaa.gov/code-review/#/admin/projects/EMC_ww3
mailto:jessica.meixner@noaa.gov

Gerrit Set-up

NOTE: You must do this for each user on each computer you will use GIT/GERRIT on WW3.
To find more information: ​https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration
The steps below are taken from the above website and from Mark Pott’s.

STEP 0: Make sure you have a VLab account and have followed the email to complete setting up
your VLab account.
STEP 1: Log into ​https://vlab.ncep.noaa.gov/code-review/​ (Note this is with your ​VLab Collaborative
Services​ credentials not Redmine).
STEP 2: Now, go to ​https://vlab.ncep.noaa.gov/code-review/#/settings/​ where you can find your
User Name and email address, which will be used in the next steps. (Note you can get to this page
by clicking on your user name in the top right corner and selecting settings).

https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration
https://vlab.ncep.noaa.gov/code-review/
https://vlab.ncep.noaa.gov/
https://vlab.ncep.noaa.gov/
https://vlab.ncep.noaa.gov/code-review/#/settings/

STEP 3: Upload your SSH key to Gerrit

3.1 See if you have a ssh key:

 >> ​cat ~/.ssh/id_rsa.pub
3.2 If you do not, create one:

>> ssh-keygen -t rsa

3.4 Then, cat your ​~/.ssh/id_rsa.pub ​and upload it to Gerrit by going to:
https://vlab.ncep.noaa.gov/code-review/#/settings/ssh-keys
Click on add:

STEP 4: Git configuration
In the following, make sure to match EXACTLY (including CaSe) your first and last name and email
as configured in Redmine (​https://vlab.ncep.noaa.gov/code-review/#/settings/​). In your terminal:
>> git config --global user.name "Your Name"

>> git config --global user.email " ​first.last@noaa.gov ​"
Note if you are an external email the @noaa.gov should match your email

STEP 5: SSH Config
Unlike the other steps.. This step is not required but it can simplify commands.

Modify your ~/.ssh/config file with the following, replacing the Firstname.Lastname with your user
name, exactly as written on ​https://vlab.ncep.noaa.gov/code-review/#/settings/

https://vlab.ncep.noaa.gov/code-review/#/settings/ssh-keys
https://vlab.ncep.noaa.gov/code-review/#/settings/
mailto:first.last@noaa.gov
https://vlab.ncep.noaa.gov/code-review/#/settings/

Note, if you do not write access to your ​~/.ssh/config ​ file (which is the case on WCOSS), you
can create a workaround with the following:

● Create a config file somewhere else such as: ​.ssh-mine/config
● Create a script that git will use in place of the system ssh (e.g., create an executable file

called ​ssh-mine ​ in your home directory). That file contains this line:

"ssh -F $HOME/.ssh-mine/config $*"

● Set the environment variable "​GIT_SSH=$HOME/ssh-mine ​"

STEP 6: Test the connection

>> ssh gerrit

>> ​ssh -p 29418 Firstname.Lastname@vlab.ncep.noaa.gov

If it’s successful, you should see something like:

If you run into trouble check
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration​ and/or
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/GerritAccessibility​ for possible fixes.

https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/GerritAccessibility

Clone the WW3 Repo

After setting up Gerrit, we are ready to clone:

>> git ​clone gerrit:EMC_ww3

If you skipped Step 5 above:

>> git clone ssh: ​//Firstname.Lastname@vlab.ncep.noaa.gov ​:29418/EMC_ww3

Clone the WW3 Repo with Message Hooks
The messages hooks are needed when pushing code to the master for review in Gerrit and making
subsequent code changes.

To clone with message hooks in one step:

>> git clone gerrit:EMC_ww3 && scp gerrit:hooks/commit-msg

EMC_ww3/.git/hooks/

To change the name of the destination directory of the repository, clone as follows:
>> git clone gerrit:EMC_ww3 ​local_dir_name​ && scp
gerrit:hooks/commit-msg ​local_dir_name​/.git/hooks/

If you skipped Step 5 above:

>> ​git clone ssh://Firstname.Lastname@vlab.ncep.noaa.gov:29418/EMC_ww3 &&
scp -p -P 29418 Firstname.Lastname@vlab.ncep.noaa.gov:hooks/commit-msg

EMC_ww3/.git/hooks/

Note:​ If you do not have access to EMC_ww3, make sure you have signed into
https://vlab.ncep.noaa.gov/code-review​ and email ​Jessica.Meixner@noaa.gov​ to be added to the
EMC_ww3 project to obtain access.

TIP​: You can copy the commands from
https://vlab.ncep.noaa.gov/code-review/#/admin/projects/EMC_ww3

https://vlab.ncep.noaa.gov/code-review/#/settings/
mailto:Jessica.Meixner@noaa.gov
https://vlab.ncep.noaa.gov/code-review/#/admin/projects/EMC_ww3

Common GIT commands
● The following has been pulled from presentations by Ken Sperow and Mark Potts as well as the internet…

From your EMC_ww3 directory:

● Check the status
>> git status

● List local branches
>> git branch

Note, the branch you are on is denoted with a *
● List remote branches

>> git branch -r

● List all branches (local and remote)
>> git branch -a

Note, the branch you are on is denoted with a *
● Checkout/change working/staging area to remote branch ‘branchname’

>> git checkout --track origin/branchname

● Checkout/change working/staging area to branch ‘branchname’
>> git checkout branchname

● Create branch from current branch and switches to it
>> git checkout -b newbranchname

● Commit changes to a local repo
>> git commit -a

Automatically stages files that have been modified and deleted, but new files you have not
told Git about are not affected.

● Add files to be committed
>> git add newfile

● Delete files from repo
>> git rm oldfile

● Unstage changes
>> git reset HEAD

● Revert last local commit (not pushed yet)
>> git reset --hard HEAD~1

● Push updates to VLab to keep it up to date with your local changes
>> git push origin mybranchname:mybranchname

● Retrieve changes from a central repo
>> git fetch

● Retrieves changes from a central repo and merges changes into working area
>> git pull

● Save off copy of modifications to be used later without committing
>> git stash

Workflow for a small bug fix:
This is for when you have found a small bug in the master and want to fix this bug. All changes are
kept on a local branch until being pushed back to the master for review.

1. Clone the repo:
>> git clone gerrit:EMC_ww3 EMC_ww3

2. If you already have a clone, ensure it is updated:
>> cd <local_git_repo>

Check to see if you have any changes:
>> git status

Check which branch you are on:
>> git branch

Change to master if needed
>> git checkout master

Update your copy with the latest from vlab (you can use ​git pull ​ or):
>>git fetch

>>git rebase master
3. Create a topic branch (from the master) where you will be working from locally.

>> git checkout master ​ (This is the branch from which you will be creating a
branch from, you might already be here)
>> git checkout -b <name_of_bugfix_branch>

4. Make your changes locally within the bugfix branch <name_of_bugfix_branch>. Remember
git branch ​ will show you which branch you are on.

5. Add and commit your changes within the local repository.
>> git add <filename(s)>

>> git commit

6. Continue with steps 4 and 5 until you are ready to push the bug fix back to the master.
7. Make sure you pull the latest changes from the remote master:

>> git pull master

-or-
>>git fetch

>>git rebase master
8. If you have multiple commits:​ You need to “squash” the commits to one update. This is so

that you only have 1 code review in Gerrit instead of multiple reviews. To do this (or see
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Squash-your-changes-bef
ore-you-Push):

a. Figure out how many commits you need to squash. You can do this with the ​git
log ​ command:

b. Determining that number, (in this example 3), you squash:

>> git rebase -i branchname~<number of commits to include>

You will then get a screen like this:

c. Change all but the first ‘pick’ to ‘squash’ in the editor and save, so:

d. Then you get a screen to edit the comment for the commit:

e. Now the commits are “squashed” to one commit, and a ​git log ​ then shows you:

9. Now you are ready to push to Gerrit for code review.

https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Push-to-Gerrit-Code-Review
>> git push gerrit:EMC_ww3 HEAD:refs/for/master

See
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration#Tired-of-typing-HEADrefsforBRANCH_
NAME​ for a tip in simplifying the above command to:
>> git push review_master

10. Now the code is ready to be reviewed through the Gerrit web interface.
11. Once the code in reviewed, approved, and verified it can be submitted (by the code manager)

for inclusion in the repository.

https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Push-to-Gerrit-Code-Review
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration#Tired-of-typing-HEADrefsforBRANCH_NAME
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Configuration#Tired-of-typing-HEADrefsforBRANCH_NAME

Workflow for larger changes with an existing remote
branch:

This is for when you are adding something to a remote branch. These remote branches are for
larger changes in ongoing projects that are not yet ready to be pushed to the master.

1. Clone the repo:
>> git clone gerrit:EMC_ww3 local_dir_name

>> cd local_dir_name
2. Checkout the remote branch and create a local branch:

List the remote branches
>> git branch -r

Checkout the remote branch “remote_branch_name”:
>> git checkout --track origin/remote_branch_name

This will then make a local branch that is tracking the remote branch.
3. Add and commit your changes within the local repository

>> git add <filename(s)>

>> git commit

The commit message should be “remote_branch_name: description of commit VLab Issue
#1234” where 1234 is the correct VLab issue.

4. When you are ready to push the changes back to the branch, first make sure you are up to
date with the remote branch. So:
>> git pull

-or-
>>git fetch

>>git rebase origin/ ​<remote_branch_name>
5. Now push your changes to the branch. (Note this doesn’t have to go through a Gerrit review,

so squashing the changes isn’t necessary, but feel free to).
>> git push origin remote_branch_name:remote_branch_name

Create a new remote branch by:
git push gerrit:EMC_ww3 local_branch_name:new_branch_name_on_remote

When you are ready for a branch to be pushed to the master:
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Cherry-pick-changes-alrea
dy-pushed-up-to-non-master-branches-in-VLab

https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Cherry-pick-changes-already-pushed-up-to-non-master-branches-in-VLab
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help#Cherry-pick-changes-already-pushed-up-to-non-master-branches-in-VLab

GIT help:
● >> man git

● >> man git-<option/command> ​for example​ >>man git-push
● Git SVN Crash Course - ​http://git.or.cz/course/svn.html
● (Easy) Git for SVN users- ​https://people.gnome.org/~newren/eg/git-for-svn-users.html
● Git for SVN Users Cheat Sheet

https://www.git-tower.com/blog/git-for-subversion-users-cheat-sheet/
● Git website (You can do the learn git in web-browser tutorial from this page)

https://git-scm.com
● Redmine wiki page: ​https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki
● Gerrit Help: ​https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help
● Basic Git Guide: https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/BasicGitGuide

Commit Messages:

If you are pushing to a remote branch (one tracked on VLab), please use the remote branch name
as the first part of the commit message and refer to the VLab Issue number (for further information
on referring to VLab issue in a commit
message:​https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Commit_Messages​) . An Example
commit messages:

BranchName: This updates x, y and z. VLab issues #23

http://git.or.cz/course/svn.html
https://people.gnome.org/~newren/eg/git-for-svn-users.html
https://www.git-tower.com/blog/git-for-subversion-users-cheat-sheet/
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Gerrit_Help
https://vlab.ncep.noaa.gov/redmine/projects/vlab/wiki/Commit_Messages

